China high quality Custom Molding Plastic Part Custom Injection Molding Produce Plastic Part Plastic Gears supplier

Product Description

Introduction

As a leading plastic injection molding company, Moldor Plastic has achieved rich experiences of design, engineering, and manufacturing value-added plastic mold and supplying molded products to customers all over the world. Equipped with state of the art machines and skilled workers, we provide you the high-quality products at very competitive price.

Our CHINAMFG are widely used in Auto Accessories, Electronics, Household appliances, Medical Devices, Game Players, Mechanical devices and other fields.

QUALITY FIRST & SERVICE FIRST & CUSTMER FIRST is our aim,MAKE EVERY PROJECT A SUCCESS is  our mission.We sincerely hope to be your trustworthy partner for long-termcooperation.

Product Details

 

Mold Shaping Customized Plastic Injection Molding
Plastic Material PP, PC, PS, POM, PE, ABS, etc. as per customers’ requierment
Surface Finish Mirror Polish, Texture, Sandblast, Mate, Spray Paint, Silk screen and etc.
Plastic Material PP, PC, PS, POM, PE, ABS, etc. as per customers’ requierment
Delivery Time 5-8 days after samples confirmed
Color Provide Pantone Color Code or sample
Packaging Standard Export Carton

 

 

Custom Your Own CHINAMFG in CHINAMFG !

According to your drawings or samples, we can provide one-stop solutions service from designing, prototyping, molds 
making, processing, spraying, assembling, inspecting, packaging to delivering, everything will be managed to the 
smallest detail. 

If you have products or ideas that require injection mold & molding, CHINAMFG would like to serve you. Our knowledgeable engineers and designers will offer suggestions on how to manufacture your product to allow for a professional 
look as well as for ease of manufacturing.

Please kindly email us your inquiry,  and our professional team is committed to providing personal service at the 
lowest possible prices to you.Your any inquiry is welcomed and will be replied soon.
  

 

1. Manufacturing experience for over 15 years.
2. Customized designs and services are accepted.
    Professional design team and engineering team offer 
    technical support.
3. Manufacturing process control. 
4. Small volume production or mass production is available.

                    5. Trained workers and professional QC team to assure the 
                         product quality.
                    6. Inspection report and material test certificates are 
                        available CHINAMFG requests.
                    7. Standard: HASCO or as customer’s requirement.
……

 

Step 1: Product Design: We provide product design service as customers’ request.
Step 2: Mold Design: We communicate & exchange the detail information with our customers to make a good mold design.
Step 3: Mold Making: Manufacturing in-house, we send the mold processing photos and videos to customers.
Step 4: Mass Production: We start plastic injection parts production after customers confirm samples.
Step 5: Assembly: We can supply assembly service as customers’ requests.
Step 6: Value added Service: Available, such as screen printing, plating, custom packaging and etc.
 

Why Us

Packaging & Shipping

FAQ

Q1:Are you a trading company or factory?
A1:We are factory.

Q2:What type of information is required for quoting a molding project?
A2:Please send your drawings or sample to us.

Q3:How long do you take to build a mold?
A3:The production timeline depends on your specific needs, normally the lead time is 25-45days.

Q4:How small or large of a plastic part will you produce?
A4:Our machine capabilities cover a range from 60-ton to 500-ton clamping forces.

Q5:What kind of steel do you use for plastic moldings?
A5:We can use any type of steel appointed by customer or popular in the market.Such as P20,718,8407,NAK80,H13,S136,

DIN 1.2738,DIN 1.2344,etc.

Q6:What types of materials can be molded by your injection products?
A6:Polystyrene,ABS,PET,TPR,TPU,PVC,Nylon,Acetal,Polypropylene,Polyethylene, Polycarbonates and etc.

Q7:Do you offer secondary service such as assembly, packaging or painting?
A7:Yes,such as assembly, painting, tapping, ultrasonic welding, trimming, sorting, customized packaging and etc.

Q8:If I have an existing tooling, could you use it to mold my project?
A8:Most certainly, if existing tooling is available, we can use them.

Q9:Can you mold around inserts or metal components?
A9:We can do insert molding with just about any metal and non-metal components.

Plastic Type: Thermoplastic
Plastic Form: Granule
Molding Method: Injection Molding
Plastic Color: Black, Red, Yellow, White, or Others
Mold Runner: Cold or Hot Runner
Surface Finish: Polish, Texture, Matt, Smooth, Can Be Customized
Customization:
Available

|

Customized Request

plastic gear

What are the benefits of using plastic gears over traditional materials?

Using plastic gears instead of traditional materials offers several benefits. Here’s a detailed explanation of the advantages of using plastic gears:

  • Weight Reduction: Plastic gears are significantly lighter in weight compared to gears made from traditional materials such as metal. This lightweight characteristic is advantageous in applications where weight reduction is important, as it can contribute to energy efficiency, lower inertia, and reduced wear on supporting components.
  • Noise and Vibration Reduction: Plastic gears have inherent damping properties that help reduce noise and vibration levels during operation. This makes them suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment. Metal gears, on the other hand, tend to generate more noise and vibration due to their higher stiffness.
  • Self-Lubrication: Certain plastic materials used in gears have inherent lubricating properties, allowing for self-lubrication between gear teeth. This reduces friction and wear, eliminating the need for external lubrication and simplifying maintenance requirements. Metal gears, on the other hand, typically require lubrication to reduce friction and wear.
  • Corrosion Resistance: Plastic gears can exhibit excellent resistance to corrosion and chemicals, depending on the chosen plastic material. This makes them suitable for applications in corrosive environments where metal gears may suffer from degradation or require additional protective measures.
  • Design Flexibility: Plastic gears offer greater design flexibility compared to metal gears. Plastic materials can be easily molded into complex shapes, allowing for the creation of custom gear profiles and tooth geometries. This design flexibility enables gear optimization for specific applications, improving performance, efficiency, and overall machinery design.
  • Cost-Effectiveness: Plastic gears are often more cost-effective compared to gears made from traditional materials. Plastic materials are generally less expensive than metals, and the manufacturing processes for plastic gears, such as injection molding, can be more efficient and economical for large-scale production.
  • Electrical Insulation: Plastic gears offer electrical insulation properties, which can be advantageous in applications where electrical isolation is required. Metal gears, on the other hand, can conduct electricity and may require additional insulation measures in certain situations.
  • Customization and Color Options: Plastic gears can be easily customized in terms of shape, size, color, and surface finish. This allows for branding, aesthetic preferences, or specific identification requirements in various applications. Metal gears, on the other hand, have more limited options for customization.

These benefits make plastic gears attractive alternatives to traditional materials in many applications. However, it’s important to consider the specific requirements and operating conditions of the application when selecting the appropriate gear material.

plastic gear

Can plastic gears be used in automotive applications?

Yes, plastic gears can be used in automotive applications. Here’s a detailed explanation:

Plastic gears have several advantages that make them suitable for certain automotive applications. They are lightweight, have good wear resistance, offer design flexibility, and can operate with low noise levels. However, it’s important to consider the specific requirements and limitations of automotive applications before using plastic gears.

1. Non-load Bearing Applications: Plastic gears are commonly used in non-load bearing applications within automotive systems. These include applications such as instrument clusters, HVAC systems, seat adjustments, and interior components. In these cases, the gears are subjected to relatively low loads and can effectively perform their functions while offering benefits such as weight reduction and cost efficiency.

2. Auxiliary Systems: Plastic gears can also be used in auxiliary systems of vehicles, such as windshield wipers, window regulators, and sunroof mechanisms. These systems typically operate at lower loads and speeds compared to primary powertrain components. Plastic gears can provide reliable performance in these applications while contributing to weight reduction and improved fuel efficiency.

3. Noise and Vibration: Plastic gears have inherent damping properties that can help reduce noise and vibration in automotive applications. This is particularly advantageous in areas where noise reduction is a priority, such as electric window mechanisms or HVAC systems. Plastic gears can contribute to a quieter and more comfortable driving experience.

4. Design Flexibility: Plastic gears offer design flexibility, allowing for complex shapes and customization to meet specific automotive requirements. They can be molded with precision to achieve intricate gear profiles and optimize gear performance. The flexibility in design can lead to improved efficiency, reduced weight, and space-saving advantages in automotive systems.

5. Material Selection: The selection of the appropriate plastic material is crucial for automotive applications. Certain plastic materials, such as engineering thermoplastics like POM (polyoxymethylene) or PA (polyamide), offer higher strength, rigidity, and wear resistance compared to standard plastics. These materials can withstand the demands of automotive environments, including temperature variations and exposure to chemicals or oils.

6. Load-Bearing Applications: While plastic gears are commonly used in non-load bearing or low-load applications within the automotive industry, they may have limitations in high-load or high-torque applications. Metal gears, such as steel or cast iron, are generally preferred for primary powertrain components such as transmissions and differential systems, where higher strength and durability are required to handle the significant loads and forces involved.

7. Environmental Considerations: Automotive applications can expose gears to various environmental factors such as temperature extremes, humidity, UV radiation, and exposure to chemicals or oils. The selected plastic material should have good resistance to these environmental conditions to ensure long-term durability and performance.

In summary, plastic gears can be successfully used in certain automotive applications, particularly in non-load bearing or low-load scenarios, as well as in auxiliary systems. They offer advantages such as weight reduction, design flexibility, and noise reduction. However, when considering the use of plastic gears in automotive applications, it’s important to carefully evaluate the specific requirements, loads, environmental conditions, and material selection to ensure optimal performance and durability.

plastic gear

Are there different types of plastic materials used for making gears?

Yes, there are different types of plastic materials used for making gears. Here’s a detailed explanation of some commonly used plastic materials in gear manufacturing:

  • Acetal (Polyoxymethylene – POM): Acetal is a popular choice for gear applications due to its excellent strength, dimensional stability, low friction, and wear resistance. It has good machinability and can be easily molded into gears with precise tooth profiles. Acetal gears offer low noise operation and have good resistance to moisture and chemicals. They are commonly used in automotive, consumer electronics, and industrial applications.
  • Polyamide (Nylon): Polyamide or nylon is another widely used plastic material for gears. It offers good mechanical properties, including high strength, toughness, and impact resistance. Nylon gears have low friction characteristics, good wear resistance, and self-lubricating properties. They are commonly used in applications such as automotive components, power tools, and industrial machinery.
  • Polyethylene (PE): Polyethylene is a versatile plastic material that can be used for gear applications. It offers good chemical resistance, low friction, and excellent electrical insulation properties. While polyethylene gears may have lower strength compared to other plastic materials, they are suitable for low-load and low-speed applications, such as in light-duty machinery, toys, and household appliances.
  • Polypropylene (PP): Polypropylene is a lightweight and cost-effective plastic material that finds applications in gear manufacturing. It offers good chemical resistance, low friction, and low moisture absorption. Polypropylene gears are commonly used in various industries, including automotive, consumer electronics, and household appliances.
  • Polycarbonate (PC): Polycarbonate is a durable and impact-resistant plastic material used for gears that require high strength and toughness. It offers excellent dimensional stability, transparency, and good resistance to heat and chemicals. Polycarbonate gears are commonly used in applications such as automotive components, electrical equipment, and machinery.
  • Polyphenylene Sulfide (PPS): Polyphenylene sulfide is a high-performance plastic material known for its excellent mechanical properties, including high strength, stiffness, and heat resistance. PPS gears offer low friction, good wear resistance, and dimensional stability. They are commonly used in demanding applications such as automotive transmissions, industrial machinery, and aerospace equipment.

These are just a few examples of the plastic materials used for making gears. The choice of plastic material depends on the specific requirements of the gear application, including load capacity, operating conditions, temperature range, chemical exposure, and cost considerations. It’s important to select a plastic material that offers the necessary combination of mechanical properties and performance characteristics for optimal gear performance.

China high quality Custom Molding Plastic Part Custom Injection Molding Produce Plastic Part Plastic Gears supplier China high quality Custom Molding Plastic Part Custom Injection Molding Produce Plastic Part Plastic Gears supplier
editor by CX 2023-11-01