China factory Plastic Injection Mould for Gear/Plastic Gear/Bottom Gear/Protective Gear/Gear Head/Ring Gear/Gear Wheel/High Gear/Sports Fan Gear/Fan Gear Molded Parts top gear

Product Description

Products Information
Product Name Household Plastic Injection Mold
Shaping Mode Plastic Injection Mould
Surface treatment Polish. Etched. Texture
Ejection System Ejector pin
Part Material ABS
Part Size(MM) 350*100*10
Mold Standard HASCO standard
Packaging According to customers’ requirement
Mould Steel A plate S50C
B plate S50C
Cavity Insert S136 (HRC 45-50 )
Core Insert S136 (HRC 45-50 )
Slider Insert 2344
Ejector Plate S50C
Spare Parts S50C
Mould Description Mould Size(L*W*H MM) 480*260*150
Mould Gross Weight(KGS) 965
Mould Life Time(Shots) 1,000,000
Mould Manufacturing Cycle 35 days
Surface Finish Polishing
Runner Description Hot runner
Ejection System Eject blade
Cycle Time(Second) 55s
Injection Gate Type Side gate


Mould Type Plastic Injection Mold
Mould Material P20/718/738/NAK80/S136
Mould Runner Cold Runner/ Hot Runner
Mould Gate Slide Gate/Sub Gate/Pin- point Gate
Cavity Single /Multi Cavity
Moulding equipment CNC,Wire Cutting,Milling Machine,EDM
Raw-material ABS,PP,PC,PA6,PA66,PVC,POM,PMMA,PS etc
Package way Wooden pallet, carton 
OEM/ODM Welcome and please offer 2D/3D file or sample 
Lead time About 20 days

POWERFULSKY MOULD Located in ShenZhen,near by HongKong.PowerfulSky Mould specializes in injection moulding production and injection mould making. In pursuit to provide our clients with economical solutions, our 9000 square CHINAMFG facility offers a wide range of machinery, ranging from 60 Tons -1000 Tons precision injection moulding capacities, toatomized robotic arm sorting and packing production lines. As the development of the world economic integration, PowerfulSky Mould will spare no efforts in exploring under the principle of ” Making your concept into reality”. There is no job too small for us. Please enquire so we can help you find a solution.
In-House Design and Manufacturestanding at the forefront of injection moulding and tooling for more than 20 years, PowerfulSky Mould prides itself in our In-House Design and Manufacturing. We employ highly skilled and professional operators for our drilling, CNC, EDM, Proprietary Mirror EDM, Mould Polishing machines. PowerfulSky Mould passed ISO9001 and IATF16949 quality management system certification. As well as ROHS environmental protection system and SGS certification. SPC is widely used in product development design, mould making, products molding, painting, coating, silkscreen and assembly, to ensure our products in high quality and high finish standard.
Powefulsky Mould strives to produce high quality products and fast delivery times forall our clients by providing a complete service. From start to finish we offer Design,Prototyping, Mould making,production, packaging and shipping. Products covered by the industries of medical devices, beauty and care, household appliances, Netcom products and Auto and so on. PowerfulSky Mould’s clients from all over the world as: USA, Europe, Brazil, Russia, Australia New Zealand and so on. We always believe technology is the primary productive force for the existence and development of the enterprises.


Warranty: 3 Years
Shaping Mode: Injection Mould
Surface Finish Process: Polishing
US$ 1/Piece
1 Piece(Min.Order)


Order Sample



Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.

about shipping cost and estimated delivery time.
Payment Method:


Initial Payment

Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

plastic gear

How do plastic gears contribute to reducing noise and vibration?

Plastic gears contribute to reducing noise and vibration in various applications. Here’s a detailed explanation of how they achieve this:

Plastic gears possess inherent properties that help dampen noise and vibration during operation. These properties, combined with specific design considerations, contribute to the reduction of noise and vibration in the following ways:

  • Damping Characteristics: Plastic materials have inherent damping characteristics, meaning they have the ability to absorb and dissipate vibrations. When compared to metal gears, which are stiffer and transmit vibrations more efficiently, plastic gears can effectively reduce the transmission of vibrations through their damping properties.
  • Reduced Resonance: Plastic gears have the ability to attenuate resonant frequencies, which are frequencies at which vibrations can be amplified. By properly designing the tooth profile, gear geometry, and material selection, plastic gears can shift or dampen these resonant frequencies, preventing excessive vibration and noise generation.
  • Tighter Gear Mesh Tolerances: Plastic gears can be manufactured with tighter gear mesh tolerances, which refers to the amount of clearance or backlash between mating gear teeth. Tighter tolerances lead to better gear engagement and reduced impact or vibration during gear meshing, resulting in quieter operation.
  • Surface Finishes: The surface finish of plastic gears can be optimized to reduce friction and noise. Smoother gear surfaces reduce the potential for gear tooth noise and improve the overall meshing characteristics between gears. Proper lubrication or the use of self-lubricating plastic materials can further enhance the noise-reducing properties.
  • Flexibility in Tooth Design: Plastic gears offer greater flexibility in tooth design compared to metal gears. Engineers can optimize the tooth profile and modify the gear geometry to minimize noise and vibration. For example, incorporating modifications such as profile shifting, tip relief, or helical teeth can help reduce gear noise by promoting smoother and more gradual tooth engagements.

By leveraging these characteristics and design considerations, plastic gears can effectively reduce noise and vibration levels in various applications. This makes them particularly suitable for use in noise-sensitive environments, such as consumer electronics, automotive components, or office equipment.

It’s important to note that while plastic gears can contribute to noise and vibration reduction, the specific noise performance also depends on other factors within the overall system, such as gear arrangement, supporting structures, and the presence of other noise sources. Therefore, a holistic approach to noise reduction should be considered when incorporating plastic gears into a design.

plastic gear

Can plastic gears be used in automotive applications?

Yes, plastic gears can be used in automotive applications. Here’s a detailed explanation:

Plastic gears have several advantages that make them suitable for certain automotive applications. They are lightweight, have good wear resistance, offer design flexibility, and can operate with low noise levels. However, it’s important to consider the specific requirements and limitations of automotive applications before using plastic gears.

1. Non-load Bearing Applications: Plastic gears are commonly used in non-load bearing applications within automotive systems. These include applications such as instrument clusters, HVAC systems, seat adjustments, and interior components. In these cases, the gears are subjected to relatively low loads and can effectively perform their functions while offering benefits such as weight reduction and cost efficiency.

2. Auxiliary Systems: Plastic gears can also be used in auxiliary systems of vehicles, such as windshield wipers, window regulators, and sunroof mechanisms. These systems typically operate at lower loads and speeds compared to primary powertrain components. Plastic gears can provide reliable performance in these applications while contributing to weight reduction and improved fuel efficiency.

3. Noise and Vibration: Plastic gears have inherent damping properties that can help reduce noise and vibration in automotive applications. This is particularly advantageous in areas where noise reduction is a priority, such as electric window mechanisms or HVAC systems. Plastic gears can contribute to a quieter and more comfortable driving experience.

4. Design Flexibility: Plastic gears offer design flexibility, allowing for complex shapes and customization to meet specific automotive requirements. They can be molded with precision to achieve intricate gear profiles and optimize gear performance. The flexibility in design can lead to improved efficiency, reduced weight, and space-saving advantages in automotive systems.

5. Material Selection: The selection of the appropriate plastic material is crucial for automotive applications. Certain plastic materials, such as engineering thermoplastics like POM (polyoxymethylene) or PA (polyamide), offer higher strength, rigidity, and wear resistance compared to standard plastics. These materials can withstand the demands of automotive environments, including temperature variations and exposure to chemicals or oils.

6. Load-Bearing Applications: While plastic gears are commonly used in non-load bearing or low-load applications within the automotive industry, they may have limitations in high-load or high-torque applications. Metal gears, such as steel or cast iron, are generally preferred for primary powertrain components such as transmissions and differential systems, where higher strength and durability are required to handle the significant loads and forces involved.

7. Environmental Considerations: Automotive applications can expose gears to various environmental factors such as temperature extremes, humidity, UV radiation, and exposure to chemicals or oils. The selected plastic material should have good resistance to these environmental conditions to ensure long-term durability and performance.

In summary, plastic gears can be successfully used in certain automotive applications, particularly in non-load bearing or low-load scenarios, as well as in auxiliary systems. They offer advantages such as weight reduction, design flexibility, and noise reduction. However, when considering the use of plastic gears in automotive applications, it’s important to carefully evaluate the specific requirements, loads, environmental conditions, and material selection to ensure optimal performance and durability.

plastic gear

What are the advantages of using plastic gears in machinery?

Plastic gears offer several advantages when used in machinery. Here’s a detailed explanation of the advantages of using plastic gears:

  • Lightweight: Plastic gears are significantly lighter in weight compared to metal gears. This lightweight characteristic is particularly beneficial in applications where weight reduction is important, as it can contribute to energy efficiency, lower inertia, and reduced wear on supporting components.
  • Low Noise and Vibration: Plastic gears have inherent damping properties, which help reduce noise and vibration levels during operation. The ability to absorb and dissipate vibrations leads to quieter machinery, making plastic gears suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment.
  • Corrosion Resistance: Certain plastic materials used in gear manufacturing exhibit excellent resistance to corrosion and chemicals. This makes plastic gears suitable for applications in corrosive environments, where metal gears may suffer from degradation or require additional protective coatings.
  • Self-Lubrication: Some plastic materials used for gear manufacturing have self-lubricating properties. These materials can reduce friction and wear between gear teeth, eliminating the need for external lubrication. Self-lubricating plastic gears can simplify maintenance requirements and reduce the risk of lubricant contamination or leakage in machinery.
  • Cost-Effective: Plastic gears can be more cost-effective compared to metal gears, especially in large-scale production. Plastic materials are often less expensive than metals, and the manufacturing processes for plastic gears can be more efficient, resulting in lower overall production costs. This cost advantage makes plastic gears an attractive option for applications where budget considerations are important.
  • Design Flexibility: Plastic gears offer greater design flexibility compared to metal gears. Plastic materials can be easily molded into complex shapes, allowing for the creation of custom gear profiles and tooth geometries. This design flexibility enables gear optimization for specific applications, improving performance, efficiency, and overall machinery design.
  • Electrical Insulation: Plastic gears provide electrical insulation properties, which can be advantageous in machinery where electrical or electronic components are in close proximity to the gears. The electrical insulation helps prevent the risk of electrical short circuits or interference caused by metal gears coming into contact with conductive parts.

It’s important to note that while plastic gears offer unique advantages, they also have limitations. They may not be suitable for applications requiring extremely high torque, high temperatures, or where precise positioning is critical. The selection of plastic gears should consider the specific requirements of the machinery and the mechanical properties of the chosen plastic material.

China factory Plastic Injection Mould for Gear/Plastic Gear/Bottom Gear/Protective Gear/Gear Head/Ring Gear/Gear Wheel/High Gear/Sports Fan Gear/Fan Gear Molded Parts top gearChina factory Plastic Injection Mould for Gear/Plastic Gear/Bottom Gear/Protective Gear/Gear Head/Ring Gear/Gear Wheel/High Gear/Sports Fan Gear/Fan Gear Molded Parts top gear
editor by CX 2023-11-01